Expression of adrenomedullin by human granulosa lutein cells and its effect on progesterone production.
نویسندگان
چکیده
OBJECTIVE Adrenomedullin (AM) has diverse functions and is expressed in a variety of tissues. This study was conducted to investigate the expression of AM in the human ovary and its effect on progesterone production by human granulosa lutein cells. DESIGN AND METHODS Follicular fluid and blood samples were obtained at the time of oocyte retrieval from patients undergoing in vitro-fertilization cycles. Concentrations of AM in follicular fluid and plasma were measured by RIA. Granulosa cells were isolated from follicular fluid and expression of AM mRNA was examined by RT-PCR. Granulosa lutein cells were cultured in vitro and secretion of AM by those cells was determined by immunoprecipitation followed by PAGE. Immunohistochemical staining with human ovaries was carried out, using a specific antibody to AM. Furthermore, the effect of AM on progesterone production by cultured granulosa lutein cells was studied. RESULTS Concentrations of AM in follicular fluid collected just before ovulation were significantly higher than those in the plasma (P<0.01). AM mRNA was expressed in granulosa cells at the preovulatory stage. Cultured granulosa lutein cells secreted immunoreactive AM. With immunohistochemical staining, it was revealed that AM was most abundantly expressed in granulosa lutein cells at the midluteal phase. No appreciable staining for AM was observed in granulosa cells in primordial and preantral follicles, whereas immunolocalization of AM was noted in granulosa cells of dominant follicles although it was not as prominent as in granulosa lutein cells at the midluteal phase. Furthermore, addition of AM to cultured granulosa lutein cells augmented progesterone secretion in a dose-dependent manner. CONCLUSIONS These results suggest that AM is transcribed and secreted in human granulosa lutein cells as a local factor to enhance progesterone production by those cells.
منابع مشابه
Suppression of progesterone production by stresscopin/urocortin 3 in cultured human granulosa-lutein cells.
BACKGROUND Corticotropin-releasing hormone (CRH) and its receptors have been identified in female reproductive tissues. CRH regulates follicular maturation, ovulation, luteolysis and steroidgenesis. A CRH-related peptide stresscopin (SCP), or urocortin III (Ucn3), has recently been identified, but its functions in the ovary remain to be elucidated. In the present study, we investigated the effe...
متن کاملPTGER1 and PTGER2 receptors mediate regulation of progesterone synthesis and type 1 11β-hydroxysteroid dehydrogenase activity by prostaglandin E2 in human granulosa–lutein cells
In luteinizing granulosa cells, prostaglandin E(2) (PGE(2)) can exert luteotrophic actions, apparently via the cAMP signalling pathway. In addition to stimulating progesterone synthesis, PGE(2) can also stimulate oxidation of the physiological glucocorticoid, cortisol, to its inactive metabolite, cortisone, by the type 1 11beta-hydroxysteroid dehydrogenase (11betaHSD1) enzyme in human granulosa...
متن کاملImpaired insulin-dependent glucose metabolism in granulosa-lutein cells from anovulatory women with polycystic ovaries.
BACKGROUND Insulin resistance and hyperinsulinaemia are well-recognized characteristics of anovulatory women with polycystic ovary syndrome (PCOS) but, paradoxically, steroidogenesis by PCOS granulosa cells remains responsive to insulin. The hypothesis to be tested in this study is that insulin resistance in the ovary is confined to the metabolic effects of insulin (i.e. glucose uptake and meta...
متن کاملEffect of oxytocin on free intracellular Ca2+ levels and progesterone release by human granulosa-lutein cells.
Oxytocin and its receptor are found in the corpus luteum in a variety of species, including the human. In the present study we used fura-2 microfluorimetry to investigate whether activation of the oxytocin receptor of cultured human granulosa-lutein cells causes intracellular calcium (Ca2+) signals and affects progesterone release. Although after 1 day in culture, cells were not responsive to o...
متن کاملHCG-mediated activation of mTORC1 signaling plays a crucial role in steroidogenesis in human granulosa lutein cells.
Luteinizing hormone/human chorionic gonadotropin stimulates progesterone biosynthesis in the corpus luteum by activating cyclic adenosine monophosphate/protein kinase A cascade. Recent studies have shown that cyclic adenosine monophosphate-mediated activation of protein kinase A interacts with the mammalian target of rapamycin signaling pathways. Furthermore, the use of mammalian target of rapa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of endocrinology
دوره 142 6 شماره
صفحات -
تاریخ انتشار 2000